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ABSTRACT 

If an attempt is made to produce an artificial aurora by 

ejecting a beam of electrons from a satellite, the experiment will 

be jeopardized if the satellite potential becomes so high as to pre- 

vent the escape of the beam electrons. The buildup of potential de- 

pends on the current collection properties of the satellite. The 

theoretical problem considered is that of the collection of electrons 

by a spherical satellite in the earth's magnetic field, as a function 

of the satellite potential, the satellite dimensions, and the magnetic 

field strength. At low or intermediate positive satellite potentials, 

the collected current is of the order of the ambient thermal electron 

current collected by an area equal to twice the cross-sectional area 

of the satellite. At large potentials, the current rises slowly, 

and is proportional to v", where V is the potential, and m is less 

than unity. The value of m has been estimated theoretically in 

this work, by two methods. One of these methods, namely, drift 

approximation theory to second order, leads to an equation, in- 

volving the form of the potential distribution, from which the 

value of m can be found. If the potential distribution is assumed 

proportional to rBn, where r is the radius in spherical coordi- 

nates, the value of m is found to be 2/(n+2). In the other method, 

the integrals of the exact equations of motion are analyzed to ob- 

tain rigorous bounds on the current collected. The current is 

found to be bounded by a value proportional to V l/2 , independent 

of the form of the potential distribution under reasonably general 

conditions. At low potentials, the current may be calculated by 

solving a self-consistent Poisson problem in which the charge densi- 

ties depend on the form of the potential distribution. Methods for 

performing this calculation are discussed. The accuracy and stabi- 

lity of the numerical solution of the Poisson problem are shown to 

depend on the position of the boundary at which the potential is 

assumed to be zero. 
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ANALYTIC AND COMPUTER STUDIES OF ELECTRON COLLECTION 

BY A SPHERICAL SATELLITE IN THE EARTH'S MAGNETIC FIELD 

I. INTRODUCTION 

The environment of a satellite moving in the ionosphere con- 

sists of a weakly ionized plasma in a magnetic field. The satellite 

usually has an electrostatic potential different from that of the 

plasma, partly due to the currents of ionospheric ions and electrons 

striking the satellite, and partly due to the emission from the 

satellite of charged particles, such as photoelectrons, secondary 

electrons, or artificial beams of ejected charged particles. 

The problem of concern in this report is that of a satellite 

which emits artificially a beam of 1 ampere of relatively high- 

velocity electrons. The satellite will become positively charged 

as a result of this emission. The potential attained by the sat- 

ellite is to be determined under the following conditions. The 

satellite, of radius 1.5 meters, is considered to be at an alti- 

tude of about 200 km, where it is assumed that the temperature is 

1500°K, the magnetic field strength is 0.45 gauss, and the electron 

density is 7.2 x 104/cm3. The Debye length is 1.0 cm, and the 

mean thermal Larmor radius is 2.7 cm. The mean ambient thermal elec- 

tron current is 0.7 milliamperes per square meter. It is important 

to note that the emitted current is of the order of 100 times the 

thermal electron current passing into an area twice the cross-sec- 

tional area of the sphere. 

The satellite potential is determined by the condition that 

there be no net current to the satellite. In the absence of emitted 

currents, the equilibrium potential of the satellite has that value 

for which the currents of electrons and positive ions passing into 

the surface from the ambient plasma are equal. This potential is 

normally negative, since the ambient electron currents are greater 

than the ambient ion currents, and is of the order of kT/e, where 
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T is the temperature of the plasma, k is the Boltzmann constant, and e 

is the electron charge. In the presence of photoelectron emission, 

secondary electron emission, or artificial electron beam emission, 

the equilibrium potential shifts toward positive values. If the 

artificial electron beam current becomes the dominant current pass- 

ing out of the surface, the equilibrium potential rises to a posi- 

tive value, tending to attract a compensating current of electrons 

from the plasma. If the equilibrium potential exceeds the beam 

particle kinetic energy, the ejected particles cannot escape. 

Thus, there is a maximum current of electrons which can be emitted, 

depending on the energy of the beam particles and on the current- 

collecting characteristics of the satellite as a function of the sat- 

ellite potential (i.e., the "current characteristic"). The electron 

current collected increases monotonically with the satellite poten- 

tial. Hence, the upper bound on the current which can be emitted 

is that current corresponding to the potential equivalent of the 

beam particle energy. In this sense, the problem of determining 

the limitation on current emission is identical to the problem of 

determining the current characteristic of an electrostatic probe 

in a plasma. Of special importance is the "saturation" part of 

the characteristic, since there the current only increases very 

slowly as a function of potential. This means that when the 

emitted current is near the saturation value, the potential tends 

to rise very rapidly. The object of the work reported here is to 

apply analytic and computer methods to determine the behavior of 

the saturation portion of the current characteristic of a sphere 

immersed in a plasma in a strong magnetic field. 

The current characteristic of a satellite in the presence 

of the earth's magnetic field is greatly different from what it 

would be in the absence of the magnetic field. Since the magnetic 

field effect is crucial, it will now be discussed further. In the 

ionosphere, Larmor (or gyration) radii of electrons are on the order 

of centimeters while satellite dimensions are on the order of meters. 
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Moreover, electron collision mean free paths are on the order of 

kilometers. Hence, electrons move easily along the magnetic field 

lines, but remain "glued" to the field lines while executing very 

tight spiral motions around them. Although the mean free paths 

are very long, collisions and other stochastic processes cause a 

slow diffusion across the field lines. The effect of this diffu- 

sion is probably negligible, although theoretical estimates of its 

magnitude are difficult to make 192 in the absence of an adequate 

theory. A drift also occurs across magnetic field lines under the 

action of inhomogeneous electric fields, as predicted by the well 

known theory of the guiding-center drift. 2,3 This "electrical 

drift" arises from a second-order term in the drift approximation 

expansion and is normally small. The rate of this drift increases 

as the electric field strength increases. However, unless the 

electric field is enormous, the electrons which can be collected 

are limited to those which move along the magnetic field lines 

from "infinity" (kilometers away) to the satellite. That is, if 

the magnetic field within a kilometer or so is considered to be 

uniform, the maximum or "saturation" current collected by the sat- 

ellite is ordinarily the thermal electron current (0.7 ma/m2 in 

the present case) which is collected by an area approximately equal 

to twice the cross-sectional area (14 m2 in the present case) of 

the satellite normal to the field lines. (The collection area is 

slightly larger than this due to the finite Larmor radius.) The 

geometric aspect of the problem is shown in Fig. 1, in which the 

satellite, assumed without loss of generality to be a sphere (of 

radius 1.5 m in the present case), is inscribed in an infinite cyl- 

inder of the same cross-sectional area, oriented parallel to the 

magnetic field. The thermal electron current entering the end-caps 

at infinity, which in the ionosphere is on the order of 10 milli- 

amperes, is collected by the sphere when its potential is posi- 

tive and of order kT/e or greater. The current diffusing 

through the walls of the cylinder may be expected on the basis of 

3 



classical collision theory to be less than the thermal value by 

the ratio of the Larmor radius to the sphere radius. 1 Experimen- 

tally, the collected current is indeed small compared with the ther- 

mal value, although it is somewhat larger than the classical value. 1 

Therefore, it is reasonable to assume here that diffusion by stochas- 

tic processes is negligible, and we will investigate only the elec- 

trical effects. 

As the potential of the satellite increases, the second- 

order electrical drift due to the inhomogeneous electric field in- 

creases, and the current collected increases, though very slowly. 

The current characteristic of the satellite essentially exhibits a 

saturation, i.e., the current-voltage curve is very nearly flat. 

It is shown in Sets. II, 111,and IV of this report that a large 

enhancement of current over the thermal value requires enormous 

satellite potentials. For example, a satellite 1.5 meters in 

radius, in a magnetic field of strength 0.45 gauss, must have a 

potential of at least lo6 volts (based on non-relativistic dyna- 

mics in Sec. III) in order to collect 100 times the thermal current, 

i.e., 1 ampere. This result is at variance with the implications of 

a paper by Beard and Johnson 4 on the current collection by a spheri- 

cal satellite. According to their formulae, the satellite need only 

have about lo4 volts in order to collect 1 ampere of current. This 

is based on the assumption of a Coulomb electric field in the vicinity 

of the satellite, which may be justified on the grounds that the sat- 

ellite potentials of interest are large (compared with kT/e) and that 

the extent of the electric field, i.e., the sheath thickness, is cor- 

respondingly very great. However, Beard and Johnson do not take angu- 

lar momentum effects into account, and, more important, assume without 

justification that the magnetic field can be neglected for the satel- 

lite potentials of interest, since they believe that the magnetic field 

effects will be "dominated" by the electric field effects. The lat- 

ter assumption is invalid, according to the results of the present 
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investigation, unless the potentials are orders of magnitude greater 

than the potentials considered by Beard and Johnson. 

In Sets. II, III, and IV, comprising Part I of this report, 

the potential is assumed to be a Coulomb potential in the vicinity 

of a spherical satellite, with an arbitrary potential on the sphere. 

The magnetic field is assumed to have a value of 0.45 gauss, a typi- 

cal value in the ionosphere, and the sphere is assumed to have a 

radius of 1.5 meters. 

In Sec. II, the current collection based on the theory of 

the drift approximation is calculated as a function of sphere poten- 

tial V, and is shown to be proportional, for large potentials, to 
v2/3 for a Coulomb potential, and to V 2 /(n+2) for a power-law 

potential falling off as rWn. The power-law potential is invoked 

to represent the effect of shielding, i.e., a rapid drop-off in 

potential. According to the drift theory, a loo-fold increase 

in current collection over the thermal value requires a sphere 

potential of at least 2~10~ volts. 

In Sec. III, the dynamical equations (non-relativistic) of 

an electron in a spherically symmetric potential are analyzed in 

order to obtain rigorous bounds on current collection. A loo-fold 

increase in current collection over the thermal value is found to 

require a sphere potential of at least 10 6 volts. The discrepancy 

between this value and the lower one given by the drift approximation 

theory may be attributed to the neglect, in the drift theory, of the 

conservation of canonical angular momentum. Thus, centrifugal 

forces, which tend to keep the electron away from the axis of the 

system, are neglected in the drift theory. It is shown that current 

collection,for large potentials, cannot increase more rapidly than 
v1/2 . As a result of the analysis, it is possible to define surfaces 

in cylindrical space, i.e., "bottles," within which the trajectories 

are confined. 
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In Sec. IV a number of exact trajectory calculations are pre- 

sented, for an electron moving from infinity toward the vicinity of 

a sphere of radius 1.5 meters, in a magnetic field of 0.45 gauss. 

A Coulomb electric field is assumed, and in all trajectory calcula- 

tions the sphere is assumed to have a potential of 1.294x107 volts, 

corresponding to 108kT. This potential was inadvertently chosen 

to be higher than the potentials of interest. It would give an 

enhancement factor in current collection of 1600 on the basis of 

the drift approximation and 360 on the basis of the dynamical 

limitations of Sec. III. Nevertheless, these calculations are of 

interest in demonstrating how the analysis of Sec. III may be ap- 

plied to problems of this type of quasi-confinement of electrons. 

Some of the trajectories are extremely complicated, and electrons 

having small positive total energy may spend a great deal of time 

in the vicinity of the sphere. For all of the trajectories cal- 

culated, the initial condition corresponds to electrons incident 

at infinity, moving initially along various magnetic field lines. 

Due to the rotational symmetry, the drift of the electrons causes 

them to move on cylindrical surfaces, or "magnetic shells", de- 

fined by the radial distance of the initial field lines from the 

axis. Figure 1 illustrates magnetic shells which may or may not 

intersect the sphere. If the radius of the magnetic shell is 

sufficiently small, the electron will move on it until it reaches 

the vicinity of the sphere, at which point it "breaks away" and 

moves in toward the sphere. If it does not strike the sphere on 

the first pass, it may bounce a great deal within the bottle be- 

fore either striking the sphere or passing out again to infinity, 

on the original magnetic shell. The space within the confining 

bottle is, in some cases, well covered by the path of the electron. 

The material in Sets. II, III, and IV, discussed above, com- 

prises Part I of this report, which is concerned with the current 

collection by a spherical satellite having large potentials. That 
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is, Part I is concerned with the "saturation" behavior of the current 

characteristic. 

For intermediate and small potentials, i.e., for potentials 

not very large compared with kT/e, the shape of the current charac- 

teristic is more difficult to ascertain. This regime applies to 

problems concerning the equilibrium potential of a satellite or, 

equivalently, the characteristics of an electrostatic plasma probe 

in a magnetic field. Even in the absence of a magnetic field, theo- 

retical progress on the probe problem has been very slow since the 

work of Langmuir and his associates? This is due, to some extent, 

to numerical difficulties, to be described later. 6-9 In the pre- 

sence of a magnetic field, there has been almost no progress at 

a11.l' The material in Sets. V, VI, and VII is concerned with 

the latter problem and comprises Part II of this report. A 

computational procedure is being developed for the purpose of cal- 

culating the sheath structure, i.e., the potential distribution 

in the vicinity of the sphere in the presence of a magnetic field. 

This program has not yet been completed. However, some progress 

has been made in the understanding of the computational nature of 

the problem. This should be useful in future work on the probe 

problem. 

A general computational approach for determining the pot- 

ential and charge density distributions in a self-consistent man- 

ner is described in Sec. V. This approach employs a discretization 

of space in the form of a grid, and the charge densities and poten- 

tials are evaluated at the points of the grid. The problem is to 

be solved for a number of fixed sphere potentials, and the net cur- 

rent collected is to be calculated for each sphere potential, thus 

yielding the current characteristic in tabular form. 

In order to test the program, calculations were performed 

on a spherically symmetric problem with the magnetic field turned 
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off. These calculations are described in Sec. VI. They were begun 

with the double purpose of checking on the operation of the program 

for relatively short runs, and to afford possible comparison with 

earlier calculations performed on spherical probes. 637 It was soon 

learned, however, that the treatment of the boundary condition red 

quiring the potential to vanish at infinity introduces a fundamental 

numerical difficulty. Because of the importance of this difficulty, 

it will now be discussed further. Since the calculations must be 

performed on a grid of finite dimensions, the potential is usually 

set to zero on the outer boundary points of the grid. The position 

of the outer boundary of the grid must be sufficiently far from 

the sphere that its exact position does not affect the solution. 

On the other hand, as the boundary is moved to greater distances, 

the difficulty of obtaining a solution increases in that the solu- 

tion becomes unstable. The instability manifests itself in the 

iterative procedure for developing the self-consistent solution, 

in that successive iterates tend to diverge and become meaning- 

less. Thus, the accuracy of a numerical solution is difficult 

to assess. Examples of this behavior are given in Sec. VI. It 

was found that the procedure adopted in Sec. VI became unstable 

as the boundary was moved out, and that the instability was asso- 

ciated with large radial distances where the potentials were small 

compared with kT. At these great distances, where the net charge 

density is small compared with no, large contributions occur, and 

therefore care must be used in summing these contributions. 

Relatively little attention, that is, in the form of pub- 

lished reports or papers on probe and satellite space charge calcu- 

lations, appears to have been given to the instability problem. 

An exceptional paper in this regard is that of Bernstein and 

Rabinowitz' , who caution that care must be used when computing the 

potential at large distances from a spherical or cylindrical probe. 

Their procedure was applied to a monoenergetic distribution of 
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particles, but it does not appear to be applicable to more general 

problems such as the subject of this report. A report of interest 

is that of Halls, who developed an integral formulation for the 

spherical and cylindrical probe, where the form of the charge 

density function, rather than its value, must be guessed at in an 

iterative scheme. This formulaeion depends on the assertion6 

that the potential falls off at large distances like the inverse 

square of the radius, for the spherical probe. Hall and Freis' 

applied this formulation to the cylinder, but it has not been 

applied to the sphere. It cannot be applied to the present prob- 

lem. 

Among the most interesting numerical solutions which have 

been published on the distribution of potential around moving 

satellites are those of Davis and Harris 11 12 and of Hohl and Wood . 

These workers apparently did not explore the effect of the boundary 

position, but rather chose it to be sufficiently near the sphere to 

render their iteration procedures convergent. Since the effect of 

moving the boundary was not ascertained, the accuracy of these 

calculations cannot be assessed. 

Other procedures have been attempted in the interest of 

developing greater stability in the calculations. Based on 

the inverse-square-law assertion for the spherical probe problem6, 

Laframboise7 adopted the condition that at the finite boundary of 

his grid, the potential, instead of vanishing, be proportional to 

rs2. Under these circumstances, he found that the solution was 

relatively insensitive to the position of the boundary. However, 

he found it necessary to use-care in the iteration process, and 

adopted a scheme in which successive density iterates were coupled. 

The present author 13 encountered instabilities in the process of 

computing the potential in the vicinity of a planar ion and electron 

trap mounted in the skin of a satellite. The potential was assumed 

to be given by apowerlaw at the boundary of the grid, but the solution 
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was unstable when the boundary was moved out beyond a certain point. 

The coupling of successive density iterates allowed the boundary 

to be moved out slightly further, but this method cannot be re- 

garded as generally satisfactory. 

Thus, a great deal of work remains to be done on this 

problem. 

In Sec. VII, simplified semi-analytic expressions are 

derived for the electron density in the presence of a strong 

magnetic field. The motivation for this is that trajectory cal- 

culations take up a great deal of computer time when the Larmor 

radius is small compared with the sphere radius, and, in employ- 

ing the general method described in Sec. V for computing particle 

densities, a large number of trajectories must be calculated. 

It should prove fruitful, in the theory of a probe in a strong 

magnetic field, to make use of the drift approximation as in 

Sec. VII, to estimate the density of electrons, i.e., the at- 

tracted particles. This has not been done previously, to the 

author's knowledge. According to the drift approximation, electrons 

(i.e., their guiding-centers) will move on the surfaces of cylindri- 

cal shells concentric with the axis of the system. Figure 1 

illustrates these surfaces. If the contribution to the density 

due to the transverse ExB motions is considered negligible corn- - 

pared with the contribution due to longitudinal motions, the 

density may be calculated as if the electrons moved along rigid 

straight lines, parallel to the magnetic field direction. 

This model has not been developed into a computer code, 

but may be done so relatively easily. 
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PART I 

ELECTRON COLLECTION AT LARGE POTENTIALS - 

Sec. II Current Collection According 
to the Drift Approximation 

Sec. III Rigorous Dynamical Bounds on 
Current Collection 

Sec. IV Exact Trajectory Calculations 



II. CURRENT COLLECTION ACCORDING TO THE DRIFT APPROXIMATION ~~ ~.____ 

The equation which describes the drift of electrons, in a 

strong magnetic field, toward the axis of the system under a rota- 

tionally symmetric electric field, may be derived on the basis of 

the theory of the drift approximation. This theory describes the 

motion of the guiding-center of an electron in non-homogeneous 

electric and magnetic fields. A non-rigorous method of deriving 

the appropriate equation is the following one. It is based on 

the expansion of the velocity in the equation of motion in a power 

series with respect to m/e, i.e., the ratio of electron mass to 

electron chargea. We will perform this expansion with the under- 

standing that the magnetic field is uniform, while the electric 

field is rotationally symmetric. 

The equations of motion of an electron in an electric field 

and a constant magnetic field may be resolved in components per- 

pendicular and parallel to the magnetic field, as follows: 

(e 74 (1) 

where $is the velocity, % is the electric field, B is the magnitude 

of the magnetic field, $ is a unit vector in the direction of the 

magnetic field, and the dot denotes the derivative with respect to 

time. The subscripts 1 and \! denote components perpendicular 

and parallel,respectively, to the direction of l?. Equation (2) 

could have been written as a scalar equation, butyL andzL in 

Eq. (1) must be described by two components in the plane perpendicular 

to IL 

(2) 
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Let?* be given by a formal 

where &Jr eB/mc, as follows: 

n=. 0 

Substituting this expansion 

09 

'5- 
hSO n=o 

power series in the quantity W", 

(3) 

into Eq. (l), we have 

(4) 

Equating the coefficients of &I, 1, W", d-', etc. to zero, we 

obtain the set of coupled equations: 

etc. 

The solution of this set of equations is: 

13 
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(6) 

(7) 
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(9) 

(10) 

etc. 

as may be verified by substitution, .-b where it is understood thatTn*$ 

vanishes for all vectors %. 

Thus, the drift approximation equation for the transverse 

motion of the guiding center may be written 

This equation is consistent with one derived for the guiding 

center motion by Northrop (Reference 3, p. 8). Northrop's equation, 

which applies to varying magnetic and electric fields, reduces to 

the first two terms of Eq. (11) f or a constant magnetic field. The 

third term in Eq. (11) is not given by Northrop's equation. It is 

of higher order than is required here and will be ignored within the 

present approximation. The first and second terms in Eq. (11) will 

be denoted the "first-order" and "second-order" drift terms, respec- 

tively, in keeping with the usage of these terms in the literature. 
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Since the electric field considered here is constant in time, 

the time-derivative 

of the electron, as 

L 

of the second-order term involves the velocity 

follows: 

(12) 

The electrostatic potential considered here is rotationally 

symmetric. Hence, a cylindrical coordinate system is conveniently 

employed, in which r, 8, and z denote the radial, azimuthal, and 

axial coordinates, respectively. The unit vectors along these 

directions will be denoted by 2, 3, and s, respectively, where k^ 

is in the direction of the magnetic field. Thus, zL is given 

by 

= E,"r 

Using the first two terms of Eq. (ll), the drift velocity, to 

first order in LO-', becomes: 

+ 0 c w-*) 

(13) 

(14) 

The signs of the second-order terms in Eq. (14), i.e., the terms in 

the brackets, will be reversed for a positively charged particle. 
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The terms in Eq. (14) h ave been discussed by Bertotti2. The first 

term involving 3 represents the familiar ExB azimuthal drift. The 

second term involving 8 represents an azimuthal second-order dia- 

magnetic drift current. The term involving 1 represents the radial 

component of the second-order drift which is of interest in this 

report. Ignoring for the moment the terms involving 6 , an electron 

(guiding center) moving along a line parallel to the z-axis would 

experience a radially inward, or a radially outward, second-order 

drift, depending on whether it sees an (algebraic) decrease or 

increase in E, as it moves along, respectively. If the source of 

the electric field were a positive point charge (i.e., an attractive 

Coulomb field) ,-E, would be always negative and would decrease if 

the electron were to move along the line in the direction of de- 

creasing separation from the positive charge. That is, if the 

electron moves so as to be nearer to the positive charge, its 

guiding center drifts radially inward as well. The conclusion 

is the same when the transverse ExB drift is included, since to 

lowest order the electron guiding center describes a helix on the 

surface of a cylinder, and it is the axial component of this mo- 

tion which gives rise to the inward drift. In terms of the electro- 

static potential energy 5 , the radially inward drift velocity 

of the guiding center, from Eq. (14), may be written 

(15') 

A. THE INWARD DRIFT 

It will be of interest to compute in some detail the radially 

inward drifts of an electron which finds itself in combined magnetic 

and electric fields. The magnetic field will be taken to be uniform 

over the dimensions of interest in the problem, and to have a strength 

of 0.45 gauss, which is typical of the earth's magnetic field in the 
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ionosphere. The electric field will be taken to be the spherically 

symmetric Coulomb field which would exist in the vicinity of a 

spherical satellite of radius 1.5 m, charged to an arbitrary posi- 

tive potential, in the absence of significant space charge shielding 

by the electrons in the ambient ionosphere. It is desired to know 

the area at infinity from which electrons can be collected by the 

sphere, as a function of the sphere radius, sphere electrostatic 

potential, and the strength of the magnetic field. In the ab- 

sence of inward drift, or if the sphere is uncharged, the collec- 

tion area at infinity is exactly equal to that of the cross-section 

of the sphere (neglecting the slight enhancement due to the finite 

Larmor radius). 

The radius of the collection area at infinity may be ob- 

tained from the solution of a first-order time-independent differ- 

ential equation derived from Eq. (15), namely 

where $(r,z) is a known axially symmetric function representing the 

electrostatic potential energy of an electron in the vicinity of the 

sphere. Equation (16) is to be solved subject to the condition that 

r be equal to the sphere radius when z lies on the equatorial plane 

of the sphere. Let the center of the sphere be at z = 0, so that 

the equatorial plane corresponds to z = 0. Then the solutions have 

the form depicted in Fig. 2. The slope dr/dz = 0 at z = 0 because 

of the symmetry of @, and dr/dz = 0 at z =#) because & and its 

derivatives vanish at infinity. Assuming the right-hand-side of 

Eq. (16) does not change sign, the function r increases monotoni- 

cally from the value of the sphere radius at z = 0 to a limiting 

value, greater than the sphere radius, at z =oo . This limiting 

value is taken to define the radius of the collection area at 

infinity. 

(16) 
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Let @ be given by the attractive Coulomb form: 

9 O’O 

where @e is the magnitude of the potential energy of an electron 

at the surface of the sphere. Denoting by a the sphere radius, and 

letting rl and z1 denote r/a and z/a, respectively, Eq. (16) 

becomes 

where 

where V (volts) is the potential on the sphere in volts, a (meters) 

is the sphere radius in meters, and B (gauss) is the strength of the 

magnetic field in gauss. 

Assuming a sphere radius of 1.5 meters and B = 0.45 gauss, 

04 becomes 

The solution of Eq. (18) is subject to the condition that rl(z1 = 0) = 1. 

Solutions of Eq. (18) h ave been obtained numerically for a num- 

ber of values of sphere potential. The results are given in Figs. 2 and 

3, and in Table I. It may be inferred from Fig. 3 or Table I that a 

loo-fold increase in current-collecting ability ((r- /a)2 = 100) is not 

(17) 

(18) 

(20) 
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achieved until the sphere potential is about 2~10~ volts. Also 

apparent from Fig. 3 or Table I is the fact that r, becomes pro- 

portional to V1i3 (i.e. to o( 'I31 as V becomes very large (>lOOO volts). 

The relative insensitivity of rM to V illustrates the difficulty of 

causing electrons to drift across the magnetic field lines through 

the agency of large electric fields alone. 

The solutions discussed above are based on the assumption 

of an unshielded electrostatic field, i.e., a Coulomb potential. 

Some insight regarding the effect of a shielded field may be af- 

forded by consideration of spherically symmetric potentials which 

fall off more rapidly than the Coulomb potential. The fact that 

the actual shielded field is not spherically symmetric is probably 

not as important as the fact that the potential falls off rapidly. 

As a model potential, one may adopt a finite sheath thickness model 

or a power-law model, for example. These two models have been shown 

by Parker 14 to be essentially equivalent characterizations of the 

form of the potential, with regard to the current-collecting charac- 

teristics of spherical probes. The power-law model will be adopted 

here. If the potential falls off as Rmn, where R is the spherical 

radius, we have, instead of Eq. (17), 

and instead of Eqs. (18) and (191, 

where 

(21) 

(22) 

(23 
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If we transform to the new variables s and 

t = zl/&i then Eq. (22) becomes 

cl5 sf 
dt= (-sa + tl>a +=z 

(24) 

I 

The solution satisfies the condition s(t = 0) = l/&F In the 

asymptotic regime, where d becomes large, i.e., where the potential 

V on the sphere becomes large, s(t = 0) approaches zero. Hence, since 

Eq. (24) is free of parameters, and since s ZO for t = 0 in the asymp- 

totic regime, the value of se' Lim s approaches a constant of the 
c+co 

order of unity. That is, asymptotically, solutions of Eq. (24) 

exhibit a similarity behavior. Thus, in the asymptotic limit, 

the solution at infinity of Eq. (22) has the form 

where sg is of the order of unity and is large compared with 

unity. The asymptotic behavior described here is borne out by the 

exact solutions of Eq. (18) for the Coulomb case, where n = 1. 

Table I shows that when o("h is larger than unity, r@ is indeed 

proportional to 06'3 . Moreover, rW /a is approximately equal in 

magnitude to oC"3. Thus, the case of n larger than unity, which 

represents the effect of shielding, results in an even slower in- 

crease of the collection radius with sphere potential than the 

Coulomb case with n = 1. 

(25) 

The drift approximation must break down for sufficiently 

large electric fields, i.e., when the electric field E is com- 

parable with or larger than the magnetic field B. This would 

occur, for the case of interest here, when E is of the order of 
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0.45 statvolts per centimeter,cr0.15 volts per meter. If R is the 

spherically radial distance from the center of the sphere, which has 

radius a and electrostatic charge Q, then E > B if: 

where o 3 is defined as the potential energy of an electron at 

the surface of the sphere. Since @/e (statvolts) = V (volts)/300, 

we have: 

Rb= 
a. 

0.7 x 16" 4 Vhb\fS) 

Thus, the breakdown occurs at the sphere surface when V is 2~10~ 

volts, and at 3 sphere radii when V is 2~10~ volts. However, ac- 

cording to Table I and Fig. 3 based on the drift approximation, 

the collection radius at infinity is 10 sphere radii (loo-fold 

enhancement in current collection) for a sphere potential of 2x105 

volts. Thus, the collection radius at infinity is, for this poten- 

tial, somewhat greater than the "breakdown" distance, and the drift 

approximation should be valid until the electron has undergone an 

appreciable inward drift. 

(26) 

(28) 

The argument concerning the validity of the drift approxi- 

mation (Eq.(18)), with regard to breakdown at high electric field 

strengths, can be generalized in the following way. It may be in- 

ferred from Eqs. (25) and (26) that the drift approximation will 
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not break down in a Coulomb electric field, provided that 

Using the definition for o( of Eq. (19), the inequality of Eq. (29) 

may be rearranged in the form: 

or 3 

m 0 < 4c 
-wIcL Gz 

Thus, for the case at hand, where a = 150 cm and c3 = eB/mc = 

1.755 x lo7 set-1, the right-hand-side of Eq. (31) is 228. Since 
2 mc = 5~10~ electron-volts, the drift approximation results given 

in Table I will become invalid when the sphere potential exceeds 

1.14x108 volts. However, for sphere potentials in excess of 106 

volts, the theory as given above must be modified to include rela- 

tivistic effects. 

A relativistic increase in the mass would manifest itself 

through the parameter d. (Eq. (19)), which is proportional to the 

mass of the electron. For a given sphere potential, the radius of 

the current-collection area at infinity would be increased, accord- 

ing to Eq. (25), by a factor 71/3 for the Coulomb case, where 7 

is the ratio of the relativistic mass to the rest mass of the 

electron. Hence, some relativistic enhancement in current collection 

( a factor of the order of 7 2/3) may be expected for sphere poten- 

tials in excess of lo6 volts. 

(2% 

(30) 

(31) 
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The basic defect of the drift approximation theory, as exem- 

plified by Eq. (16), is that conservation of canonical angular 

momentum has not been taken properly into account. The inclusion 

of this angular momentum in the theory would result in a reduction 

of the current-collection area at infinity, since some of the kinetic 

energy resides in transverse motion, which, due to centrifugal 

force, tends to keep the electron away from the axis of the system. 

The role of canonical angular momentum in limiting the 

current collection by the sphere will be discussed in the next section. 
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III. RIGOROUS DYNAMICAL BOUNDS ON CURRENT COLlECTION" 

In this section, the integrals of the motion will be analyzed, 

for an electron moving in a uniform magnetic field which is superim- 

posed on a rotationally symmetric electric field produced by a charged 

sphere. A relation will be derived which gives, to a good approxi- 

mation, the shape of the volume of space which contains the trajectory 

of the electron. The case of interest is that of an electron which 

enters the volume at infinity, moving initially along a magnetic 

field line. For a fixed sphere potential, sphere radius, and mag- 

netic field strength, a necessary condition for the electron to be 

collected is that the inner bounding surface of the containing volume 

must intersect the sphere. This condition is not sufficient since 

the electron may "bounce" around within the volume, miss the sphere, 

and pass out again to infinity. Thus, the question of sufficiency 

is not easily answered, but the condition of necessity is of interest 

since it gives an unambiguous lower bound on the sphere potential 

required to collect current from a given area at infinity. The 

non-relativistic equations of motion will be considered. 

Choose the cylindrical coordinates r, 8, and z to represent 

the radial, azimuthal, and axial coordinates of the electron, re- 

spectively. The z-axis passes through the center of the sphere and 

is parallel to the magnetic field, of strength B. The Lagrangian 

of the system may be given by 

where the dots signify time-differentiation, and Ws eB/mc, with e 

and m representing the charge and mass of the electron, respectively. 

* The idea for this analysis is due to B. L. Murphy, of Mt. Auburn 
Research Associates, whose contributions are gratefully acknowledged. 
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@(r,d is the potential energy of the electron, which is as yet 

an unspecified function of r and z. From this Lagrangian, we may 

derive the equations of motion, which yield the following first 

integral: 

where 

and the zero subscripts refer to the initial position of the electron. 

The constant c is the canonical angular momentum divided by m. Let 

us assume that the electron starts at infinity, where @ (ro,zo) van- 

ishes, and has negligible initial kinetic energy, that is, total 

energy,at infinity. Thus, we set Go = 6, = Lo = 0, which simplifies 

the algebra without changing the essential character of the problem. 

Thus, Eqs. (2) and (3) lead to the following condition for which 
. 
r= 0: 

(2) 

(3) 

(4) 

The relation between r and z given by Eq. (4) expresses the equation 

of the boundary surface of the volume or "bottle" in r-z space con- 

taining the electron trajectory. 
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Several conclusions may be drawn from Eq. (4). There is no 

real solution unless @ is negative. In the limit as @-+ 0 or 

B+ao, the right-hand-side of Eq. (4) vanishes. Then r approaches 

its initial value ro. 

Consider the left-hand-side of Eq. (4) as a function of r. 

It vanishes at r = r. (the initial value) and rises monotonically 

to infinity either as r/r0 approaches zero or as r/r0 approaches 

infinity. That is, it may be considered to have two monotonic 

branches, one corresponding to r/r0 < 1 and one corresponding to 

r/r0 > 1. 

Now assume that the right-hand-side is positive for all finite 

z and r, and that the partial derivatives of the right-hand-side with 

respect to z and r are negative. That is, the right-hand-side is 

assumed to be a monotonic decreasing function of z with r fixed, and 

a monotonic decreasing function of r with z fixed. Then, for any 

fixed value of z, Eq. (4) has two roots, rmin and rmax, where rmin 

< r. and rmax > roO Moreover, rmin (z) decreases and rmax(z) increases, 

as z decreases. The functions rmin(z) and rmax(z> define the walls of 

the "bottle" in r-z space which contains the trajectory of the elec- 

tron. Figures 4, 6 and 8 illustrate typical bottle shapes. At z = 00 , 

the walls coincide at the radial value ro, i.e., the bottle collapses 

to a cylindrical shell, which may be called the initial "magnetic 

shell." As z goes from 00 to 0, the inner wall moves inward, and the 

outer wall moves outward, from the initial radius ro. At z = 0, the 

inner wall achieves its innermost radius rmin(0), while outer wall 

achieves its outermost radius rmax(0). If 'min (0) > a, where a is 

the radius of the sphere, the electron trajectory cannot intersect 

the sphere. Thus, a necessary condition for electron collection is 

that rmin (0) be less than or equal to a. 

It is not possible, without knowing z as a function of r and 

=, to obtain rmin(0). We do not know the behavior of k since we 

do not know the analytic behavior of the trajectory. The question 
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arises whether a useful lower bound for rmin(0) can be obtained in 

the absence of such information. The answer is affirmative, as may 

be seen by considering the right-hand-side of Eq. (4). If we set 

i to zero, we incur th;e following consequences: The right-hand- 

side, under the conditions of the preceding paragraph, is thereby 

increased in value. The root at rmin becomes smaller, and the 

root at rmax becomes greater. That is, the inner wall of the bottle 

moves further inward and represents a lower bound on rmin(0). It 

is this lower bound which proves to'be useful, since the potential 

distributions of interest are expected to satisfy the conditions 

of the preceding paragraph. This applies to any spherically symmetric 

potential, and to axially symmetric potentials which have reasonably 

smooth behavior. 

In order to illustrate the consequences of the bound on 

rmin(0) obtained by setting z = 0 in Eq. (4), we will assume an 

attractive Coulomb potential distribution in the vicinity of the 

sphere, in the form: 

In Eq. (5), a0 is the magnitude of the potential energy of an 

electron on the surface of the sphere, and a is the sphere radius. 

It is convenient to write z as a function of r, using Eqs. (4) 

and (5). The result, giving the shape of the walls of the bottle, 

may be put in the form: 

where o( is the parameter defined by Eq. (19) of Sec. II. It is 

(5) 

repeated here for convenient reference, as follows: 
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From Eq. (6), the relation between rmin(0)/a and r,/a may be 

written: 

Thus, the condition that r min(0) be less than or equal to a is 

equivalent to the statement: 

Therefore, the current collected by the sphere cannot be enhanced 

by a factor greater than that given by the right-hand-side of Eq. 

(9) , which constitutes a ri.gorous upper bound. 

In order to enhance the current collection by a factor of 

100, d must be at least as great as 3.75~10'3. For a sphere radius 

of 1.5 meters and a magnetic field strength of 0.45 gauss, this 

means that the sphere potential must be greater than 26706, or 

106 volts. This is an order of magnitude greater than the value 

2x105 volts given by the drift theory (Sec. II) for the same en- 

hancement in current. The discrepancy is due to the fact that the 

conservation of angular momentum, when properly taken into account, 

causes some of the kinetic energy to appear in transverse motion, 

thus setting up a centrifugal barrier which tends to keep the 

electron away from the axis. 

(8) 

(9) 

It is interesting that the bound given by Eq. (9) is inde- 

pendent of the form of the potential, but depends only on the value 
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of the potential on the sphere. This may be taken to indicate that 

shielding has little or no effect on the results of this section. 

For large sphere potentials, the current collection area at infi- 

nity is proportional to V l/2 , according to Eq. (9), as compared 

with V2/n+2 given by the drift theory (Sec. II). In either case, 

it is very insensitive to the value and form of the potential. 

In the next section, exact trajectory calculations will 

be presented, which demonstrate the utility of the above analysis. 
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IV. EXACT TRAJECTORY CALCULATIONS 

Assuming that an electron is subjected simultaneously to a 

uniform magnetic field and a Coulomb electric field generated by a 

charged sphere, a number of electron trajectories were computed with 

high precision. A predictor-corrector code was developed for this 

purpose, with double precisYion to control round-off errors, and with 

automatic control of step size which kept the truncation error per 

step to within an adjustable range. 16 The program was run on an 

IBM 7094 computer, maintaining a range 10 -8 to lo-lo for the trun- 

cation error. It was found that this gave satisfactory accuracy 

(no significant change with further reduction in step size) without 

requiring excessive computer time (several minutes for trajectories 

with many loops). 

According to the theory of the drift approximation (Sec. 

11) , a sphere of radius 1.5 meters, immersed in a magnetic field 

of strength 0.45 gauss, and charged to a potential of 1.29x107 

volts (a value higher than the values discussed in Sec. II), 

will collect electron current from an area at infinity 1600 times 

as great as its own cross-sectional area. On the other hand, the 

dynamical analysis of Sec. III indicates that the collection area 

at infinity will not be greater than 360 times the sphere cross- 

sectional area. The radius of this limiting collection area is 

2850 cm. 

The trajectory code was employed to study the path of an 

electron as it comes toward the sphere, starting from infinity 

with zero energy and moving along a given magnetic field line (de- 

fining a cylindrical magnetic shell). Since the numerical calcu- 

lation must start at a finite point, the initial positionwastaken 

at a sufficiently great axial distance from the sphere that the 

ExB drift would be small. That is, the transverse drift velocity 

of the guiding center would be less than the mean thermal velocity 

of the electron at infinity, while the longitudinal velocity would 

be appropriate to an electron of zero total energy. For a sphere 

potential of 1.29x107 volts, a sphere radius 1.5 meters, a magnetic 
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field of 0.45 gauss, a temperature of 0.129 volts, and magnetic 

shells of radius 50 meters or less, the required axial starting 

position is 50,000 cm from the sphere. For all the runs discussed 

here, the axial starting position was fixed at 50,000 cm. 

Several runs were made with varying magnetic shell radii. 

According to the analysis of Sec. III, the radius of the limiting 

collection area is 2850 cm, under the conditions stated. Runs 

were made with starting shell radii both greater than and less 

than 2850 cm. In both cases, the limiting surfaces ("bottles") 

in r-z space were found to represent well the shape of the actual 

space containing the trajectories. The trajectories computed with 

starting radii less than 2850 cm were more interesting than those 

with greater radii, since the electron made many close passes to 

the sphere. 

The trajectories with starting radii of 2850 cm, 1500 cm, 

and 1000 cm will be discussed in some detail here. Figures 4, 6, 

and 8 show the outer and inner surfaces of the bottles in r-z 

cylindrical space containing the trajectories of electrons start- 

ing at radii 2850 cm, 1500 cm, and 1000 cm,respectively. The 

spatial extent covered in the z-direction is 100,000 cm. Figures 

5, 7, and 9 show close-up views of the inner surface of the bottle, 

in the vicinity of the sphere, for the cases of initial radii 2850 

cm, 1500 cm, and 1000 cm, respectively. In all cases, the electron 

tended to oscillate between positive and negative values of z, 

while oscillating very frequently in r and bouncing off the walls 

of the confining bottle. The trajectories were arbitrarily termi- 

nated when they reached z = + 100,000 cm. The trajectories are too 

complicated to depict in drawings, but their features will be de- 

scribed. 

Tables II, III, and IV show the successive minima and maxima 

attained in the z-direction by the electron trajectory in the cases 

of 2850 cm, 1500 cm, and 1000 cm, respectively. The confinement 
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effect is most marked in the 2850-cm case (Table II), in which the 

electron oscillates 15 times in the z-direction before passing out 

of the plane at z = 100,000 cm. Superimposed on each of these oscil- 

lations are many oscillations in the r-direction. The curves marked 

by the numerals 1, 2, and 3 in Fig. 5 are portions of the 2850-cm 

trajectory in the vicinity of the sphere. They are associated with 

the extrema at z = 441 cm, -707 cm, and -383 cm, respectively. These 

extrema are also indicated in Table II by the same numerals, showing 

that they occ'ur after 5 oscillations, 9 oscillations, and 12 oscilla- 

tions, respectively, in the z-direction. 

The 1500-cm trajectory oscillates 4 times in the z-direction 

before passing out of the plane at z = 100,000 cm. The curves marked 

by the numerals 1, 2, and 3 in Fig. 7 are portions of this trajectory 

in the vicinity of the sphere. They are associated with the extremum 

at z = -372 cm, the portion between the extrema z = 6147 cm and 

-4916 cm, and the extremum at z = -598 cm, respectively. These ex- 

trema are indicated in Table III. Since the space in which the tra- 

jectory was followed was limited, it is possible that, after many 

more oscillations in a larger space, the electron would return and 

strike the sphere. 

The lOOO-cm trajectory oscillates 3% times, after which 

the electron strikes the sphere. The curves marked by the numerals 

1, 2, and 3 in Fig. 9 are portions of this trajectory in the vici- 

nity of the sphere. The numerals 1 and 2 are associated with the 

extrema at z = -160 cm and -523 cm, respectively. The numeral 3 

denotes the final portion which intersects the sphere. These por- 

tions are indicated in Table IV. 

It is interesting to observe, in Figs. 5, 7, and 9, how 

close the trajectory comes to the inner wall of the bottle. This 

illustrates rather dramatically the sharpness of the analytical 

bounds derived in Sec. III. However, it is evident that an electron 

which is permitted to hit the sphere on the basis of these bounds 
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may spend a great deal of time in the vicinity of the sphere. 

This section completes the treatment of current collection 

at large potentials, tihich comprises the material of Part I of 

this report. 
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PART II 

ELECTRON COLLECTION AT SMALL POTENTIALS 

Sec. V 

Sec. VI 

Sec. VII 

General Method for Self- 
Consistent Solution 

Calculations with Spherical 
Symmetry 

One-Dimensional Model for 
Density 
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V. ---GENERAL METHOD FOR SELF-CONSISTENT SOLUTION 

Assume that the sphere is immersed in a collision-free plas- 

ma of electrons and positive ions, where T is the temperature of the 

plasma, no is the normal particle density of ions and electrons in 

the ambient plasma, and the velocity distributions in the ambient plas- 

ma are assumed to be Maxwellian. There is a uniform magnetic field, 

the presence of which does not affect the velocity distributions in 

the undisturbed plasma at "infinity." The calculation of the cur- 

rent collected by the sphere for a given sphere potential requires 

the solution of a set of simultaneous equations, including a Poisson 

equation in which the charge density depends on the behavior of the 

densities in phase space. These densities are themselves solutions 

of the collision-free Boltzmann equation (which need not be written 

down here) and are constant along trajectories of constant total 

energy. The complete set of equations to be solved simultaneously 

will now be presented, and these will be followed by a detailed 

explanation. The equations are: 

"i (F) 

n, = JT.. 
42 a- -p, G$iiiq 

occup;&f 

(2) 

(3) 
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1 = I; - Ie 

In Eq. (1)) The Poisson equation, d denotes the electro- 

static potential energy of an ion and -d denotes the electrostatic 

potential energy of an electron, in units of kT. All lengths are 

taken in units of the Debye length, (kT/4rnoe2>l/2. The solution 

of Eq. (1) is subject to the boundary conditions that d must have 

the value Q, on the surface of the sphere, and must vanish at in- 

finity. In Eqs. (2) and (3), the fractional particle densities of 

electrons and ions relative to their values at infinity are denoted 

by n,/n, and nilno, respectively, and are functions of the local 

position vector Y . The densities are given by integrals over 

local velocity space of certain functions, where Ge and pi de- 

note the local velocity vectors of an electron and an ion, respec- 

(4) 

(5) 

(6) 

(7) 

(8) 
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tively, at the point i?. The electron velocity ve and the ion velo- 

city vi are taken to be in units of (2kT/me)lj2 and (2kT/mi)1'2, 

respectively, where me and mi denote the masses of an electron and 

an ion, respectively. In the integral of Eq. (2), each value of 

3 characterizes a trajectory, ve along which the density in phase 

space is constant. Thus, the integrand of Eq. (2) vanishes when 

the trajectory is unoccupied, i.e., when it corresponds to an 

electron which comes to '? from a non-emitting surface. The 

integrand of Eq. (2) is given by Eq. (4) when the trajectory cor- 

responds to an electron which comes to ? from infinity, that is, 

the trajectory is occupied. Similar considerations apply to the 

ion density, given by Eqs. (3) and (5). In Eqs. (6) and (7), 

I, and Ii are the currents of electrons and ions, respectively, 

collected by the sphere, and in Eq. (8), I is the net current 

collected by the sphere. In Eq. (6) or Eq. (7), the current 

density vector is given by a triple integral over velocity space, 

and its normal component is integrated over the surface of the 

sphere. The current density integrals have contributions only 

from occupied trajectories, and these contributions are given 

by Eqs. (4) and (5), similar to the density integrals in Eqs. 

(2) and (3). 

It will be assumed that charged particles incident on 

the surface of the sphere are absorbed. The sphere is also 

assumed to emit a given current of electrons. If the emitted 

electrons were to contribute to the charge density, this con- 

tribution would appear in the integrand of Eq. (2). If any of the 

emitted electrons were to return to the sphere, the contribution 

of this current could appear in the integrand of Eq. (6). However, 

it will be assumed that the emitted electrons are ejected at such 

a high velocity that their density contribution is negligible and 

that they do not return to the sphere. 
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The self-consistent solution desired is the solution of Eqs. 

(1) - (S), for a given potential do on the sphere. When this has 

been achieved, the evaluation of Eqs. (6) - (8) gives the corres- 

ponding collected current. A computational procedure for the solu- 

tion of Eqs. (1) - (5) is the following. 

The space in the vicinity of the sphere may be represented 

by a grid of points such as that shown in Fig. 10. Since the prob- 

lem is axially symmetric about the direction of the magnetic field, 

a spherical polar coordinate system has been chosen. The grid is 

shown to be rectangular in R, the spherical radial distance, and 

8, the polar angle. The magnetic field direction corresponds to 

0 0. = The sphere surface, R,, is represented by the first row 

of points in the grid. The problem is also symmetric about the 

equatorial plane at 0 = T/2. 

The potential and density are defined as functions of 

position on the points of this grid. If the magnetic field were 

non-uniform, it also could be specified on the same grid. The 

potential assumes the value do on the bottom row of points, i.e., 

R = Ro. The potential is assumed to vanish on the top row of 

points, at R = Rmax, which WY11 be called "the boundary." The 

choice of the proper value of Rmax is a difficult matter, as dis- 

cussed in Sec. I (Introduction). It must be far enough out to 

satisfy the requirement that its position does not affect the 

potential in the region of interest. Putting it out too far 

renders the solution difficult to obtain. This matter will be 

considered further in Sec. VI. 

In Eq. (11, the Poisson equation, the Laplacian dif- 

ferential operator may be approximated by a difference operator 

defined with respect to the given grid. Let the grid points 

be characterized by the two indices, i and j, where i refers to 

the radial coordinate and j refers to the angular coordinate. 



Then the Poisson equation, in difference form, may be expressed by 

the following possible scheme: 

+ C(i,j) +C'/.i) = F=I:,J"l 

Equation (9) expresses a linear relation between the potential 

at the (i,j)-th grid point and nearest vertical and horizontal 

neighbors. The function F(i,j) on the right-hand-side is the dif- 

ference between n,(i,j) and ni(i,j), i.e., the electron and ion 

particle densities at the (i,j)-th grid point. 

The set of Eqs. (9) f or all interior grid points, together 

with equations of symmetry at grid points on the axis 8 = 0, 

constitute a set of simultaneous non-linear equations for the 

potentials at the grid points. 15 

A fundamental difficulty, aside from the question of 

stability associated with the position of the boundary where the 

potential vanishes, is that of the evaluation of the right-hand- 

side of Eq. (9), i.e., of F. This function cannot be expressed 

analytically in general, and depends, not only on the local value 

of the potential, but also on the potential at other points. That 

is, the values of ne and ni are affected by the missing contributions 

of particles which cannot get to the (i,j)-th grid point from other 

parts of space. Thus, ne or ni must be evaluated by performing the 

triple integrals in velocity space, Eqs. (2) and (3), numerically, 

where each evaluation of the integrand requires the calculation of a 

(9) 
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trajectory. Since the integrands are either zero or the analytic 

functions given by Eqs. (4) and (5), the essential function of the 

numerical approach is to determine the occupied domain in velocity 

space. The numerical evaluation of a triple integral, such as Eq. 

(2) or (3), consists in replacing it by an approximating triple 

quadrature of the form: 

where the triplet of indices (k,,[, n) refers to the velocity 

vector T(k,a,n) which defines the (k,&, n)-th trajectory. 

Equation (10) is sometimes called a "sum over trajectories." 

The function f(k,R, n) is evaluated by tracing the (k,d, n)-th 

trajectory backwards in time to its source. If the source is a 

point at "infinity", i.e., on the boundary of the grid, f is 

given by Eq. (4) f or an electron and by Eq. (5) for an ion. If 

the source is found to be on the surface of the sphere, f is 

set to zero. (If emission of particles from the sphere surface 

were to be taken into account, f would be assigned an appro- 

priate value at this point.) The coefficient A(k,A, n) de- 

pends on the quadrature scheme (e.g., Gaussian). The accuracy 

of the trajectory sum in Eq. (10) may be increased by increasing 

the product NlN2N3, i.e., the number of trajectories. 

Each term in the trajectory sum requires the calculation of 

a trajectory. Starting at the (i,j)-th grid point with an initial 

velocity <(k,R, n), the equations of motion may be integrated 

backwards in time, using any of several methods, such as a pre- 

dictor-corrector, a Runge-Kutta, or a Taylor series method. The 

potential gradient at any position in the grid may be obtained 

by interpolation. The same grid may be used for both ions and 

electrons by reversing the signs of the potentials. 
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The self-consistent solution of Eq. (9) is the set of poten- 

tials at the grid-points, which may be considered as the components 

of a vector 7. We may express the problem formally as that of 

solution of the matrix equation: 

where L is a matrix operator and F is a vector, whose component 

at the (i,j)-th grid point depends on the values of B at all grid 
a 

points. Since, as discussed above, F cannot be expressed analy- 

tically as a function of 2, an iteration procedure appears to be 

the only recourse. A possible iteration procedure would be the 

following: 

where';' denotes the p-th iterate for 7. The implication of 

Eq. (12) is that one begins with a guess for d and evaluates the 

sum Eq. (10) at all grid points, for both electrons and ions, in 

order to obtain a vector b. Eq. (12) is then solved as a set 

of linear equations for-7 , which becomes in turn the next iterate. 

There are two questions which arise in connection with this proce- 

dure. One is concerned with whether the procedure will converge. 

The other is concerned with the accuracy of the solution when con- 

vergence is achieved. The answers to these questions are related 

to each other. Since the true solution cannot be known, confidence 

in the correctness of the solution obtained is gained by observing 

whether it is sensitive to the numerical parameters. These para- 

meters include the number of grid points, the spatial extent of the 

grid, the number of trajectories per grid point, and the accuracy 

of individual trajectories. The convergence of the procedure is 

connected with the stability of the iteration procedure, which in 

turn appears to depend more strongly on the spatial extent of the 
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grid than on any other parameter. Numerical experiments discussed 

in Sec. VI, using the program described above, bear out this asser- 

tion. (See also .Reference 13). There is a tendency for the solu- 

tion to become insensitive to the boundary position as this posi- 

tion is moved outward. However, beyond a certain position conver- 

gence cannot be obtained. Thus, as the boundary is moved progres- 

sively outward, one hopes to observe the insensitivity before di- 

vergence sets it. This does not necessarily occur. However, con- 

vergence can be always assured at the expense of accuracy by 

moving the boundary inward. 

In the next section, numerical experiments on convergence 

and stability will be described. 
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VI. CALCULATIONS WITH SPHERICAL SYMMETRY 

This section deals with numerical solutions to the Poisson 

equation 

p-q)= F (0 

Let r and 8 represent the radius and polar angle in a spherical polar 

coordinate system. In this coordinate system,Eq. (1) can be written: 

It is convenient to transform from the variable d to the variable 

Cyz d, where v satisfies the equation 

The formulation of Eq. (3) was found to have better numerical proper- 

ties than Eq. (2) when difference analogues were used with unequal 

spacing. For a grid in the form of that shown in Fig. 10, the fol- 

lowing difference analogue, centered about the (i,j)-th grid point, 

was adopted: 

= y; F (-I$ 
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where the coefficients are given by 

cc; 4, j ) = a 

h,( h,+ hc0 

(5) 

( 6) 

( 7) 

(8) 

h 3 = QJ, -- G&j-,,,, (11) 
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h 3 = \c: -h 7 41 (12) 

h, = F - q,, ? 

where8 is in units ofr. 

Equations (5) - (13) constitute a difference scheme defined on a 

grid with non-uniform spacing. 15 

In order to study the numerical convergence properties of 

the Poisson calculation, problems with spherical symmetry were in- 

vestigated. Moreover, since the calculation of particle densities 

required more computer time than any other phase of the calculation, 

it was decided provisionally to represent the space charge density 

function on the right-hand-side of the Poisson equation with an 

analytical model function. The convergence properties of the num- 

erical scheme should not depend strongly on the exact nature of the 

space charge function. The analytic model function employed is 

defined as follows: 

.i==KE 

(13) 

(14) 

where 

(15) 

and 

(16) 
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where B is the potential energy of an electron in units of kT. The 

upper signs are to be used in Eq. (15) when Q is negative, and the 

lower signs when B is positive. That is, when d is negative, the 

electrons are attracted, and the (singly-charged) ions are repelled, 

the density of ions in this case being given by the exponential 

term. The factor K is a correction, assuming straight-line tra- 

jectories, for the shadowing effect of the sphere, 4TK being the 

solid angle subtended at the point r by the sphere. The sphere 

radius is ro. The function F, is obtained by evaluating the den- 

sity integrals (see Eqs. (2) and (3) of Sec. V) analytically under 

the assumption that the sphere has no shadowing effect (i.e., the 

sphere is transparent). 

Using the F of Eq. (14), tests were made for a sphere of 

radius r. = 150 Debye lengths (Debye length = 1 cm) having poten- 

tials Q, = -10 kT and -100 kT (kT = .1294 electron-volts). The 

solution of the Poisson problem was found to be extremely unstable 

when the outer boundary of the grid, where I = 0, was set at 5000 

cm. The solution became stable when the outer boundary was brought 

within 157 cm, i.e., to within 7 cm of the sphere surface. This 

phenomenon is connected with the fact that the net charge density 

F is small at radii exceeding 157 cm, and that a small net charge 

density at great distances makes a large contribution to the poten- 

tial. This is manifested in the Poisson difference equations by 

the weighting of F in proportion to the radial distance (Eq. (4)). 

In consequence, the contribution of distance space charges must be 

carefully taken into account. A numerical limiting process was 

adopted, in which more and more distant space charges were pro- 

gressively included, by moving the boundary successively outward in 

steps and solving a sequence of corresponding problems. The poten- 

tials at fixed radii were observed to tend to converge to values 

independent of the boundary position before the problems became 

unstable and incapable of solution. The process is illustrated by 

the following example. 
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With the sphere potential fixed at -10 kT, a sequence of prob- 

lems was solved, in which the radius of the outer boundary of the grid 

was set at the successive values: 152, 153, 154, 155, 156, 157, etc., 

cm. The Poisson difference equations, Eqs. (4), using Eq. (14) for 

the right-hand-side, was solved in each case. The solutions are 

shown in Table V. 

The solutions were obtained by an iterative process, in which 

F = 0 served as the initial guessed input to obtain the zeroth 

potential iterate (Laplace solution). Successive F-iterates were 

averaged with preceding ones to form new inputs. 

In Table V, the potentials are shown at fixed radial posi- 

tions in columns, each column representing the solution of a prob- 

lem with a given boundary position. The position of the boundary 

for each problem is indicated above the corresponding column. At 

the head of each column, the notation d(N) indicates that N iterations 

were required to reproduce the potential distribution to three signi- 

ficant figures. Thus, as the boundary moves out, the number of 

iterations req,uired increases, and the value of the potential at 

a fixed radi,us tends to converge. However, when the boundary was 

at 157 cm, the solution had not converged after 37 iterations. 

The successive potential iterates oscillated between two distinct 

"modes". In the column corresponding to 157 cm, the range of 

oscillation is shown, for each radial position, between the 9th and 

10th iterates. These modes were slowly coming together, but it 

was clear from the rate of convergence that many more iterations 

would be required. At 158 cm, the oscillation occurred between 

two modes which diverged rapidly from one another. 

The problems with 155 cm or 156 cm probably represent the 

most accurate solutions in the sequence of problems shown. 

Runs were also made with 8, = -100 kT, for which the solution 

became unstable for boundary positions beyond 158 cm. The solution 

at 158 cm is shown in Table VI. 



The electron-ion density calculation program described in 

Sec. V was coded for the computer and test runs were made to repeat 

the sequence of problems discussed above. However, the density 

values obtained were erratic, due to the use of an insufficient 

number of trajectories per point when the potential falls off very 

rapidly with distance. An investigation is under way to determine 

the required number of trajectories. This has not yet been com- 

pleted. The same circumstances apply to a current density program 

coded for the computer. Using 8192 trajectories for the problem 

with +. = -10 kT, the solution of which is given in Table V, the 

current was calculated to be 1.09, in units of 4Tro2(kT/2Tm) l/2 
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VII. ONE-DIMENSIONAL MODEL FOR DENSITY 

When the ambient magnetic field is strong, an important 

simplification can be made with respect to calculating the density 

of electrons, due to the fact that the electric field is rotationally 

symmetric about an axis parallel to the magnetic field. The magnetic 

field can be considered "strong" in the sense that the Larmor radius 

(2.7 cm in the present case) is small compared with the radius of the 

sphere (150 cm in the present case). The motivation for using a 

simplified model is that density evaluations, obtained by following 

many trajectories as outlined in Sec. V, typically require more 

computer time than other parts of a self-consistent calculation. 

As the magnetic field increases in strength, the tight spiral motions 

of the particles require more calculational steps in following their 

trajectories. On the other hand, the drift approximation becomes 

increasingly applicable, and, when the magnetic field is very strong, 

may yield an excellent approximation to the density. 

According to the theory of the drift approximation (Sec. II), 

the electron guiding-centers are essentially constrained to move 

on the surfaces of cylinders concentric with the axis of the system. 

The axis is parallel to the magnetic field and passes through the 

center of the sphere. Assuming that the contribution to the density 

due to the E x B drift velocity is negligible compared with the 

contribution due to longitudinal velocities, the density of electrons 

on the right-hand side of the Poisson equation (Eq. (1) of Sec. V) 

can be evaluated by a formula based on a one-dimensional model. The 

assumption that the E x B drift contribution is negligible should 

be valid if the electric field is not strong. Thus, due to rotational 

symmetry, the density of particles at a point may be calculated as if 

the particles which contribute to the density at that point moved on 

a rigid straight line, passing through that point and parallel to 

the magnetic field direction. The formula for the density of particles 

at a point may be derived in the following way. 
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Let the line of motion be oriented parallel to the z-axis of 

the rotationally symmetric system of coordinates centered at the 

sphere. Let the magnetic field lines be separated into two classes, 

those which intersect the sphere, and those which do not intersect 

it. These two,Flasses will be discussed separately. 

A. INTERSECTING LINE 

We will first treat the case of an intersecting field line, 

assuming that the potential distribution is given by the sample 

form shown in Fig. lla. Between the sphere surface at z = zO and 

z=+- to the right, two peaks are showx, at z= "I and z = z 2' 
The potential at the sphere surface is CpO, and at z1 and z2 the 

potential is $1 and $,, respectively. (The symbol $I denotes the 

potential energy in units of kT.) The peak potential values are 

shown in the sample as positive, for the purpose of illustrating 

the method, which is more complicated when there are positive peaks 

than when the potential is completely negative. There are four 

intervals to be considered: (zO, z,), (z,, z,), (z,, z,), and 

cz 2’ -1. (The symbol (z , zb) denotes "the interval between 

Z and z b.") These intezvals will be considered as follows. a 

In the interval (zO, z,), there are no particles moving to 

the right since the sphere absorbs, but does not emit, particles. 

There are particles moving to the left, which have come from + OJ 

and have overcome the barrier of height 9, at z = zl. The density 

of particles moving to the left (nL) in the interval (zO, zl) is 

given by the integral (the one-dimensional analogue of Eq. (2) of 

Sec. V) in one-dimensional velocity space: 



where the lower limit of the integration is the minimum velocity (in 

units of m) which a particle can have in (z , zl) after sur- 0 
mounting the peak $l. The symbol erfc (x) denotes the complementary 

error function of x. Since the density of particles moving to the 

right (nk) is zero, the density of particles in (zO, zl) is 

(2) 

The intervals (z,, z3) and (z,, m> are equivalent. In these 
intervals, particles moving to the left have a minimum velocity of zero 

and a maximum velocity of infinity, while those moving to the right 

have a minimum velocity of zero and a maximum velocity of dm. 

The latter particles are those which are reflected from the top of the 

peak at 0,. Thus, 

- 
eQ, 

-7 v- 

so that the density in (z,, z3) or (z,, m) is: 

(3) 

(4) 
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The interval (z,, 2 z ) is more complicated than the others, 

since there are peaks on bath sides of the point of interest. In this 

interval, particles moving to the left have a minimum velocity of 

m and a maximum velocity of infinity, while those moving to 

the right have a minimum velocity of I&-- and a maximum velocity 

of j/v . Thus, 

(6) 

(7) 

so that the density in (z,, z2) is: 

This expression is baaed on the assumption that the peak C#I~ is higher than 

the peak 42. That is, for this interval, 4 cannot be greater than the 

lower of the two peaks, and in this interval has values less than or 

equal to I$~. 

If the peak 4, had been lower than the peak (I,, it would have 

been necessary to define an interval (~1, z3> (not shown in Fig. lla) in 

which I$ would have values less than or equal to I$ . 
1 

Then nR would be 

zero instead of Eq. (7), and the density would be given by 
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(9) 

rather than by Eq. (8). 

The rules for obtaining Eqs. (1) - (9) can be generalized 

by considering the following three categories, which exhaust all 

cases, for a given position z where the potential has the value I$. 

It is assumed that there is a highest peak of value 4, greater than 

any other peak in the potential distribution, and that this value 

is greater than or equal to zero. There may be secondary peaks of 

value greater than or equal to zero. Thus: 

1. The peak 0, lies between z and 0~ ( to the right). In this 

case, the density is given by: 

(10) 

2. The peak 4, lies between z and z. (to the left), and the 

highest peak between z and 03 (to the right) has a value 

+q < 4. In this case, the density is given by: 

3. The peak $p lies between z and z. (to the left), and the 

highest peak between z and o" (to the right) has a value 

4q > 4. In this case, the density is given by: 

53 



A few important examples of the application of Eqs. (10) - 

(12) are the following ones. If (see Fig. 12a) the potential falls 

monotonically from the positive value $. (at zo) to zero (at m), 

the highest peak is Q 
P 

= 4. (at zo) and Eq. (11) is the appropriate 

equation. If (see Fig. 12b) the potential rises monotonically 

from the negative value -I#~ (at zo) to zero (at ~), the highest 

peak is I$ 
P 

= 0 (at a), and Eq. (10) is the appropriate equation. 

If (see Fig. (12~) the potential falls from the positive value 

t$o (at zo) to zero (at zl), attains a negative minimum value -4 m' 
and then rises to zero (at a), the highest peak is $p = @o (at zo). 

For z < zl, the highest peak in the range between z and O1 ( to 

the right) is I$ 
4 

= 0 < $, and Eq. (11) is the appropriate equation. 

For z > zl, the highest peak in the range between z and w (to the 

right) is I$ 
4 

= 0 > 0, and Eq. (12) is the appropriate equation. If 

(see Fig. 12d) the potential rises from the negative value -0, 

(at zo) to zero, attains a positive maximum value f (at zm), and 

then falls to zero (at m), the highest peak is $p = f (at zm). 

For z < zm, 4p is to the right, and Eq. (10) is the appropriate 

equation. For z > zm, 4 
P 

is to the left, and the highest peak in 

the range between z and 03 (to the right) is 4 = 0 <$ , and Eq. (11) 
q 

is the appropriate equation. 

This completes the discussion of the case of an intersecting 

field line. 
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3. NON-INTERSECTING LINE 

We will now treat the case of a non-intersecting field 

line, assuming that the potential distribution is given by the 

sample form shown in Fig. llb. This case is simpler than that of 

an intersecting line. The potential distribution is assumed to be 

symmetric about z = 0, which corresponds to the equatorial plane 

of the sphere. Referring to Fig. llb: 

electrons coming from z = kc0 

In the interval (0, zl), 

have a minimum velocity of magnitude 

so that the density is given by 

+ In the intervals (zl, z3) and (z2,00),electrons coming from z = -O" 

have a minimum velocity of zero, so that the density is given by 

4 n .z e- 

In the interval (z,, z,), electrons coming from z -2~ have a 

minimum velocity of magnitude so that the density is 

given by 

(14) 

(15) 

The rules for obtaining Eqs. (13) - (15) may be generalized 

by considering the following two categories: 

1. There is a peak $ 
P' 

of value greater than or equal to zero, in 

the interval (z, =),such that 4 > 4. 
P 

In this case, the density 

is given by: 
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(16) 

2. There is no potential of value greater than 4 in the interval 

(z, ->. In this case, the density is given by: 

(17) 

As in the case of the intersecting line, the peak 4p may be the 

zero potential at infinity. 

This completes the derivation of the one-dimensional formulae 

for the density of electrons. If the sphere is large compared with 

the Larmor radius of ions, the above formulae would apply to the 

ions as well. In applying these formulae to the self-consistent 

problem of a spherical probe in a magnetic field, it would be con- 

venient to use cylindrical coordinates so that the particle density 

can be evaluated on shells of constant cylindrical radius, employing 

the forml.lae of this section. 
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TABLE I 

Drift Equation Solutions for Coulomb Potential. 

Collection radius at infinity e room Sphere radius = a. 
Sphere radius 1.5 meters. Magnetic field 0.45 gauss. 

v (volts) J/3 
(r,/a) (r,/a) 2 

1 

10 

102 

lo3 

104 

105 

lo6 

lo7 

108 

. 155 

.335 

. 720 

1.55 

3.35 

7.20 

15.5 

33.5 

72.0 

1.00125 1.0025 

1.0124 1.025 

1.1161 1.246 

1.763 3.107 

3.685 13.58 

7.932 62.92 

17.09 292.0 

36.82 1355 

79.32 6303 
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TABLE II 

Trajectory Extrema. r- = 2850 cm. 

Sphere Potential 1.29 x lo7 volts. 

Sphere Radius 150 cm. Magnetic Field 0.45 gauss. 

z (cm) 

50000 

-1602 

2995 

-38796 

8375 

- 2684 

8141 

-50874 

6143 

-27700 

(1) 441 

- 5863 

3684 

- 4981 

2406 

z (cm) (continued) 

-21725 

1635 

-10222 

4479 

(2) - 707 

48062 

-8362 

2219 

-13218 

24134 

(3) - 383 

23989 

13540 

801 

-65714 

100000 (out of region) 



TABLE III 

Trajectory Extrema. rol = 1500 cm. 

Sphere Potential 1.29 x lo7 volts. 

Sphere Radius 150 cm. Magnetic Field 0.45 gauss. 

z (cm) 

50000 

(1) - 372 

18016 

-7642 

6147 
(2) 

-4916 

21463 

(3) - 598 

100000 (out of region) 
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TABLE IV 

Trajectory Extrema. roD = 1000 cm. 

Sphere Potential 1.29 x lo7 volts. 

Sphere Radius 150 cm. Magnetic Field 0.45 gauss. 

z (cm) 

50000 

(1) - 160 

42546 

(2) - 523 

50329 

-1142 

10301 

-5075 

(3) - 84 (hit) 
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TABLE V 

Boundary at 

Radius (cm) 

150 

151 

152 

153 

154 

155 

156 

157 

Poisson Solution. Spherical Symmetry. 

4. = -10 (1.29 volts). Sphere Radius 150 cm. 

152 153 154 155 

90 Aia 2tL2.l Az!l 

-10 -10 -10 -10 

- 4.3 - 5.3 - 5.49 - 5.54 

0 - 2.1 - 2.6 - 2.73 

0 - 1.0 - 1.16 

0 - 0.39 

0 

O(n) denotes potential after n iterations. 

156 

-10 

- 5.55 

- 2.75 

- 1.19 

- 0.49 

- 0.15 

0 

157 cm. 

$(9/10)* 

-10 / -10 

-5.8 / -5.4 

-3.2 / -2.4 

-1.8 / -0.8 

-1.1 / +0.03 

-0.8 / +0.3 

-0.4 / +0.2 

o/o 

* Not converged after 37 iterations. Showing 9th/lOth iterates. 
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TABLE VI 

Poisson Solution. Spherical Symmetry. 

4. = -100 (12.9 volts). Sphere Radius 150 cm. 

Boundary at 

Radius (cm) 

150 

151 

152 

153 

154 

155 

156 

157 

158 

155 

4(6) 

-100 

- 70.5 

- 46.7 

- 27.7 

- 12.5 

0 

156 

(9(a) 

-100 

- 71.8 

- 49.4 

- 31.8 

- 18.4 

- 8.1 

0 

157 158 cm. 

4(15)* 

-100 

-72.4 

- 50.6 

- 33.7 

- 21.0 

- 11.7 

- 4.9 

0 

e(n) denotes potential after n iterations. 

fb(15)* 

-100 

- 72.7 

- 51.1 

- 34.5 

- 22.0 

- 13.1 

- 6.9 

- 2.8 

0 

* Upper limit of 15 iterations allowed. Almost converged 
to 3 significant figures. 
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FIGURE 1. Sphere in Strong Magnetic Field. 
Guiding-Centers Moving on Cylindrical Shells. 

I c/ I I I I \I / 
a. Shell which intersects sphere. b. Shell which does not intersect sphere. 
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1: KUKL 2. Ilrifl Eqrlalion Solutions. 
r vs z for various potentials. 
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FTCUKE 3. Limiting Radii vs Potential 
from Drift Equation Solutions. 
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FIGURE 4. Magnetic Bottle - Initial Shell 2850 cm. 
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FIGURE 5. Vicinity of Sphere - Initial Shell 2850 cm. 
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FIGURE 6. Magnetic I:nttle - Initial Shell 1500 cm. 
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FIGURE 7. Vicinity of Sphere - Initial Shell 1500 cm. 
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FICUKE S. Plngnetic Eottle - Initial Shell 1000 cm. 
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FIGURE 9. Vicinity of Sphere - Initial Shell 1000 cm. 
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FIGURE 10. Grid in Spherical Coordinates 
for Poisson Calculation. 
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FIGURE 11. General Potential Distributions 
for One-Dimensional Model. 

sphere (a) Intersecting Line 

equatorial plane (b) Non-intersecting Line 



I’ICURE 12. Simple Potential Distributions 
for One-Dimensional Model. 
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